Epistatic analysis of carcass characteristics in pigs reveals genomic interactions between quantitative trait loci attributable to additive and dominance genetic effects.

نویسندگان

  • C Duthie
  • G Simm
  • A Doeschl-Wilson
  • E Kalm
  • P W Knap
  • R Roehe
چکیده

The present study focused on the identification of epistatic QTL pairs for body composition traits (carcass cut, lean tissue, and fat tissue weights) measured at slaughter weight (140 kg of BW) in a 3-generation full-sib population developed by crossing Pietrain sires with a crossbred dam line. Depending on the trait, phenotypic observations were available for 306 to 315 F(2) animals. For the QTL analysis, 386 animals were genotyped for 88 molecular markers covering chromosomes SSC1, SSC2, SSC4, SSC6, SSC7, SSC8, SSC9, SSC10, SSC13, and SSC14. In total, 23 significant epistatic QTL pairs were identified, with the additive x additive genetic interaction being the most prevalent. Epistatic QTL were identified across all chromosomes except for SSC13, and epistatic QTL pairs accounted for between 5.8 and 10.2% of the phenotypic variance. Seven epistatic QTL pairs were between QTL that resided on the same chromosome, and 16 were between QTL that resided on different chromosomes. Sus scrofa chromosome 1, SSC2, SSC4, SSC6, SSC8, and SSC9 harbored the greatest number of epistatic QTL. The epistatic QTL pair with the greatest effect was for the entire loin weight between 2 locations on SSC7, explaining 10.2% of the phenotypic variance. Epistatic associations were identified between regions of the genome that contain the IGF-2 or melanocortin-4 receptor genes, with QTL residing in other genomic locations. Quantitative trait loci in the region of the melanocortin-4 receptor gene and on SSC7 showed significant positive dominance effects for entire belly weight, which were offset by negative dominance x dominance interactions between these QTL. In contrast, the QTL in the region of the IGF-2 gene showed significant negative dominance effects for entire ham weight, which were largely overcompensated for by positive additive x dominance genetic effects with a QTL on SSC9. The study shows that epistasis is of great importance for the genomic regulation of body composition in pigs and contributes substantially to the variation in complex traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)

A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...

متن کامل

Predictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive

A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...

متن کامل

Mapping QTL with additive effects and additive x additive epistatic interactions for plant architecture in wheat (Triticum aestivum L.)

In bread wheat (Triticum aestivum L.), crop height is an important determinant of agronomic performance. To map QTLs with additive effects and additive×additive epistatic interactions, 148 recombinant inbred lines and their parents, (‘YecoraRojo’ and Iranian landrace (No. #49)) were evaluated under normal and water deficit conditions. The experiments were carried out on research farms of Mahaba...

متن کامل

Linkage analysis of microsatellite markers on chromosome 5 in an F2 population of Japanese quail to identify quantitative trait loci affecting carcass traits

An F2 Japanese quail population was developed by crossing two strains (wild and white) to map quantitative trait loci (QTL) for performance and carcass traits. A total of 472 F2 birds were reared and slaughtered at 42 days of age. Performance and carcass traits were measured on all of the F2 individuals. Parental (P0), F1 and F2 individuals were genotyped with 3 microsatellites from quail chrom...

متن کامل

Effects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy

The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 88 7  شماره 

صفحات  -

تاریخ انتشار 2010